4A24 A-D CARD MANUAL

Version 1.6
HW Rev 9 - SW Rev. B5

This page intentionally not blank

Table of Contents

A4 1

GENERAL . . 2
HARDWARE CONFIGURATION

INPUT RANGE e e 3

SINGLE-ENDED/DIFFERENTIAL SELECT i 3

CONNECTOR AND JUMPER LOCATIONS 4

HOST INTERFACE e e e e 5

GENERAL INTERFACE DESCRIPTION 5

GENERAL . . 3

FIFO 5

COMMAND REGISTER 5

DATA REGISTER e 6

WRITING A PARAMETER e 6

READING A PARAMETER 6

BUSY TIME 7

FIRMWARE DOWNLOAD e 8

DOWNLOAD PROCESS e 8

CUSTOM FIRMWARE e 8

CONNECTORS . .. 9

ANALOG INPUT CONNECTOR e 9

DIGITAL /O CONNECTOR e 9

OPERATION . . 11

PARAMETER TYPES e 11

PARAMETER DESCRIPTIONS 11

INTERNAL HARDWARE e 13

GENERAL . .. 13

MUXTABLE . . 13

LOADING THE MUXTABLE 16

STARTING OUT RIGHT 16

CONVERSION START MASK REGISTER 16

SAMPLE COUNT REGISTER 18

CONVERSION RATE GENERATOR o 18

INTERRUPT SELECT REGISTER 19

/O PORTS . . o 20

Table of Contents

EXAMPLES
SIMPLE POLLED MODE 21
TIMED START . . 22
REFERENCE INFORMATION e 24
SPECIFICATIONS 25
APPENDIX
A CPUOP CODES e 26
B DSP CODE LISTING e 29

4A24 1

4A24

GENERAL

The 4A24 is a high resolution, high speed, low cost DSP based A-D card for the PC/104
bus. 200 Khz and 500 KHz models are available. On card EEPROM calibration storage and fully
digital zero and span calibration eliminates potentiometers and simplifies circuitry for low cost and
high performance.

A high bandwidth instrumentation amplifier is used for the input. 16 single ended or 8
differential inputs are provided via the input multiplexor. A 0 to 5V unipolar range and +- 2.5V and
+- 5V bipolar ranges are jumper selectable

Input channel scan sequence, averaging, option, raw/calibrated data choice, and autozero
option are determined by a built-in 1024 entry function table. Four function table extended
multiplexor select addresses are available from the Analog 1/0 connector for submultiplexing or
other functions.

The averaging option in the function table allows A-D data on selected channels to be
unaveraged, or averaged from 2 to 128 times for noise reduction. On card averaging reduces bus
utilization compared to host averaging of A-D data.

Converted data is placed in a 128K word sample FIFO so that host latency requirements
are relaxed.

Conversions can be started by the timer, an external start convert input, or the host
processor. Synchronous timed burst conversions (1 to 2*32-1 conversions) can be started by the
host or the external start convert input.

The conversion start timer is a 24 bit, 50 MHz programmable divider for high resolution
and wide conversion rate range.

The 4A24 can operate in polled or interrupt driven mode. In polled mode, the data
available status of the FIFO is read from a status port and if data as available, the FIFO port can
be read. In the simplest polled mode, the host writes to the FIFO port to start a conversion, polls
the status register for the DAV flag and then reads the A-D data from the FIFO port.

In interrupt driven mode, an interrupt is generated when the 128K word FIFO reaches a
predetermined count. At this point the host can do a block I/O read from the FIFO to efficiently
transfer the data to the host. The 4A24 can be programmed to use any of the available PC/104
bus interrupts.

24 general purpose /O bits are provided. Each I/O bit can be individually programmed to
be an input or output. Optional pullups are provided for all /O bits.

All host interface logic on the 4A24 is contained in a FPGA to allow field upgradability and
customization for special applications including on card signal processing ad high speed I/O.

4A24 2

HARDWARE CONFIGURATION
GENERAL

The 4A24 has 2 hardware settable options. These options are the input range and
single-ended/differential input mode selection. Hardware options are determined by
moving sets of jumpers to different positions. The jumper positions assume that the 4A24
card is right-side up, that is the 4A24 silkscreen text is right-side up.

INPUT RANGE

The 4A24 has three input ranges, -2.5 --> +2.5V, 0 --> +5V and -5 --> +5V.
These ranges are selected by jumpers W4 and W5

w4 W5 RANGE

DOWN UP 2.5V --> +2.5V

DOWN DOWN 0 --> +5V

upP UP BV --> +5V (DEFAULT)

At card reset when the EEPROM cardmode variable is set to auto (the default),
the jumper settings are sensed and the A-D setup and calibrated for the current input
range. This is only done at card reset, so if you change the input range jumpers, you
must reset the card before it will function correctly.

SINGLE-ENDED/DIFFERENTIAL MODE

The 4A24's input circuitry can operate in single ended or differential mode. In
single ended mode, 16 single ended inputs are available. In differential mode 8 differential
inputs are available. The input mode is selected by jumpers W6,W7,W8,and W9. When
only W6 and W8 are installed (both jumpers on left side), single ended mode is selected.
When only W7 and W9 are installed (both jumpers on right side), differential mode is

selected.

w6 W8 w7 W9 MODE

IN IN OuT OuT SINGLE ENDED

OuUT OUT IN IN DIFFERENTIAL (DEFAULT)

4A24 3

CONNECTOR AND DEFAULT JUMPER LOCATIONS

P2 - ANALOG INPUT CONNECTOR

PIN 1

SHOWN JUMPERED FOR -5 ..
DIFFERENTIAL MODE

+5 INPUT

A

O

$00 3

v20
[Jeras

325 D PICII I

On 1
als;! ul;l, ||:|:§s MESA 4A24 A-D

. O
conricl—] wwoeas

4A24 4

P1 - DIGITAL 1/0 CONNECTOR

HOST INTERFACE

INTERFACE SPECIFICATIONS

GENERAL

The 4A24s host interface consists of two main parts, a FIFO interface, used for
reading A-D data, and the internal processor interface, used for setup and control. The
host interface appears as a register map with seven 16 bit registers starting at the BASE
address +2. (Note that that all addresses are byte addresss) All host interaction with the
4A24 is done via these registers. The default 4A24 base address is 0x220h. 4A24's with
firmware revision of B5 or greater have the option of a user settable base address.

FIFO

Acquired analog data is placed on a hardware FIFO that can be read from the
PC/104 bus. This FIFO has a capacity of 131072 (2717) samples. The FIFO is read at
4A24 base address.

DATA FIFO @ BASE+0
D | D D| D |D]|D D| D |D|D D| D |D|D D | D

Writes to the FIFO can be used to start individual A-D conversions or a burst of
conversion if these options are enabled. The specific data written to the FIFO is ignored.

COMMAND/STATUS REGISTER

The register at base address +2 is the command/status register. The
command/status register is used in conjunction with the data register for reading and
writing A-D setup parameters. The bit definition for command/status register writes are
as follows:

COMMAND/STATUS REGISTER WRITES @BASE + 2
w | X X X X |PO| P9 | P8 | PT | P6 | P5 | P4 | P3| P2|PL| PO

W (MSB) is the write bit. If this bit is ‘1", a write operation will be performed. If it
is a ‘0", a read operation will be performed. The PO through P10 bits specify which
parameter is to be read or written

4A24 5

HOST INTERFACE
INTERFACE SPECIFICATIONS

On reads, Bit 15 of the command/status register is the busy bit, indicating that a
command is in progress. Bit 14 is the Data Available bit, indicating that data is available
from the host FIFO. Bit 13 is the IRQ status bit that reflects that state of the IRQ FF. The
other bits (S) are general purpose status bits that can be used by the firmware to show
internal system status.

COMMAN/STATUS REGISTER READS @BASE + 2
B | DA |IRQ| S S] S S S] S S S] S S

On power up, the lower 8 status bits in the command/status register show the DSP
firmware revision number.

DATA REGISTER
A-D setup and control parameters are transferred to and from the 4A24 via the
data register. The data register is located at 4A24 base address +4.

DATA REGISTER @ BASE+4
oc|bby)pbpb|bb|Db|b|D|D|D|D|D|D|D

WRITING A PARAMETER

The process of writing a parameter is as follows: First write the parameter data to
the data register. Next the command register is written with the desired parameter
number and write flag (1 bit in MSB). When the command is written, the busy bit will be
set and will stay set until the command is completed. Commands and data must not be
written when the busy bit is high.

READING A PARAMETER

The process of reading a parameter is as follows: First the command register is
written with the desired parameter number. Once the command is written the busy bit will
be set and will stay set until the requested data is available in the data register. Once the
busy bit returns to 0 the data can be read from the data register. Commands must not
be written when the busy bit is high. Data should not be read from the data register when
the busy bit is high.

4A24 6

HOST INTERFACE

GENERAL

BUSY TIME

The internal DSP handles host interface requests on a synchronous polled basis,
that is it does all the A-D operations, then runs a host interface loop until A-D data
becomes available at the next sample time. One side effect of this mode of operation is
that the host interface will stay busy for the time it takes to process the A-D data (~2
usec), and that the host interface bandwidth will decrease with increasing A-D sample
rates.

Note that this busy time does not affect the data FIFO. Transfers from the data
FIFO can run as fast as 5M words per second.

If a host interface cycle starts just after A-D data needs to be processed, the
interface busy bit will stay high for the maximum (~2 usec) period. There is always one
host interface cycle done per sample period, so that if you set the sample rate faster than
the DSP can process the A-D data, the host interface will still function.

4A24 7

HOST INTERFACE

GENERAL

FIRMWARE DOWNLOAD

The 16 bit DSP in the 4A24 can have its firmware downloaded from the host if
desired. This will overwrite the standard 4A24 firmware that is part of the FPGA
configuration. Three registers are involved in program downloading: the program address
register, the program data register, and the processor reset register.

PROGRAM ADDRESS REGISTER @ BASE+8
X I X[X[X[XA AIA AIA|JA|A|IA]A|A]A

PROGRAM DATA REGISTER @ BASE+10
oc|bpbb)pb|pbb|bb|D|D|D|D|D|D|D

DSP RESET REGISTER @ BASE+14
X[X[X[X[X[X | X | X | X[X]| X | X]|X]|X|X]|R

DOWNLOAD PROCESS

The process for downloading new DSP firmware is as follows: First the DSP is
reset by writing a 1 to the DSP reset register. Then all the words of DSP program are
written by first writing the target address for the word to the program address register,
then writing the program data for that address to the program data register. This is
repeated for all the words of the program firmware. When all the program words have
been written, DSP reset is removed by writing a 0 to the DSP reset register, starting
execution of the new code.

CUSTOM FIRMWARE

Please contact MESA if you need custom features in the DSP firmware. We can
also help if you wish to develop your own firmware or modify the standard firmware.
Custom firmware can be built into the FPGA configuration if desired.

4A24 8

CONNECTORS
ANALOG INPUT CONNECTOR

P2 is the analog input connector. P2 is a latching 40 pin header for 40 conductor .050"
pitch flat cable P2 pinout is as follows:

1 SHIELD GND 2 SHIELD GND
3 +INO (INO) 4 -INO (IN8)

5 +IN1 (IN1) 6 -IN1 (IN9)

7 +IN2 (IN2) 8 -IN2 (IN10)

9 +IN3 (IN3) 10 -IN3 (IN11)
11 SHIELD GND 12 SHIELD GND
13 +IN4 (IN4) 14 -IN4 (IN12)
15 +IN5 (IN5) 16 -IN5 (IN13)
17 +IN6 (IN6) 18 -IN6 (IN14)
19 +IN7 (IN7) 20 -IN7 (IN15)
21 SHIELD GND 22 SHIELD GND
23 INPUT COMMON 24 INPUT COMMON
25 VREF OUT 26 VREF OUT

27 ANALOG GND 28 ANALOG GND
29 SHIELD GND 30 SHIELD GND
31 EXTSTRTCONV 32 POWER GND
33 MUXA3 34 MUXA4

35 MUXA5 36 MUXA6

37 MUXA7 38 NC

39 +5V POWER 40 POWER GND

Input names in parenthesis are for single ended mode. INPUT COMMON is AD
common input for single ended mode.

4A24 9

CONNECTORS

DIGITAL I/O CONNECTOR

P1 is the digital /0O input connector. Two 12 BIT digital I/O ports are available on
P1. P1 is a 50 pin shrouded header for 50 conductor .050" pitch flat cable. P1 pinout is

as follows:

PORTAO 3 PORTAL

PORTAZ2 7 PORTAS
9 PORTA4 11 PORTAS
13 PORTAG 15 PORTA7
17 PORTAS 19 PORTA9
21 PORTA10 23 PORTA11l
25 PORTBO 27 PORTB1
29 PORTB2 31 PORTB3
33 PORTB4 35 PORTB5
37 PORTB6 39 PORTB7
41 PORTBS 43 PORTB9
45 PORTB10 47 PORTB11

49 +5V POWER
All even numbered pins are grounded.

4A24 10

OPERATION
PARAMETERS

GENERAL

The 4A24 A-D card has a large number of parameters that control its operation,
Some of these parameters access internal hardware and some are variables that the DSP
uses. There are more parameters and internal hardware than shown in this table, a
complete list of parameters can be found in the DSP source code listing in the appendix

of this manual

PARAMETER

ADOFFSETSB

ADGAIN5B

ADOFFSET2D5B

ADGAIN2D5B

ADOFFSET5U

ADGAIN5U

ADOFFSET2D5U

ADGAIN2D5U

ADOFFSET

ADOFFSETHIGH

PARAMETER DESCRIPTIONS
OFFSET AND GAIN PARAMETERS:

NUMBER

22

23

24

25

26

27

28

29

30

31

DESC

A-D offset for 5V bipolar mode, read from
EEPROM at startup.

A-D gain for 5V bipolar mode, read from
EEPROM at startup.

A-D offset for 2.5V bipolar mode, read from
EEPROM at startup.

A-D gain for 2.5V bipolar mode, read from
EEPROM at startup.

A-D offset for 5V unipolar mode, read from
EEPROM at startup.

A-D gain for 5V unipolar mode, read from
EEPROM at startup

A-D offset for 2.5V unipolar mode, read from
EEPROM at startup.

A-D gain for 2.5V unipolar mode, read from
EEPROM at startup.

Working value of A-D offset, one of the above
offset values, chosen at startup based on the
CARDMODE EEEPROM value. May be
overwriiten by host or DSP in autozero mode.

High 16 bits of ADOFFSET (sign extended)

4A24 11

OPERATION

PARAMETER DESCRIPTIONS

OFFSET AND GAIN PARAMETERS:

PARAMETER NUMBER

ADGAIN

CARDMODE

32

45

DESC

Working A-D gain calibration value, chosen from
the EEPROM gain values above at startup
depending on the EEPROM CARDMODE value.

Determines A-D range, read from EEPROM at
startup or automatically determined by startup
logic if EEPROM CARDMODE parameter is 0

FIFO AND INTERRUPT PARAMETERS

BOUNDEDFIFOCNT

IRQSETTHRESH

IRQCLRTHRESH

38

39

40

Count of A-D samples available in host FIFO. If
available samples in FIFO is > 65535, count is
bounded to 65535

FIFO sample count value to set IRQ FF, must
be >= IRQCLRTHRESH

FIFO sample count value to clear IRQ FF, must
be <= IRQSETTHRESH

PARAMETERS THAT ACCESS INTERNAL HARDWARE

FIFOCLR

IRQDRVREG

PORTADATA
PORTADDR
PORTBDATA

PORTBDDR

1042

1044

1048

1049

1050

1051

Writes here clear the Host FIFO

IRQ setup register, specifies which IRQ to drive
and has tri-state drive enable bit.

12 bit I/O port A data register
Port A Data Direction Register (1 = out)
12 bit I/O port b data register

Port B Data Direction Register (1= out)

4A24 12

OPERATION

PARAMETER DESCRIPTIONS
PARAMETERS THAT ACCESS INTERNAL HARDWARE

MUXTABLEWADD 1056 MUXTABLE write address (address in table
where MUXTABLE data will be written)

MUXTABLEDATA 1057 MUXTABLE data write port

MUXTABLEPTR 1058 MUXTABLE read pointer initialized here

CONVSTARTREG 1060 A-D convertor start convert source mask
register

SAMPLECOUNTLOW 1061 Low word of convert count

SAMPLECOUNTHIGH 1062 High word of convert count

PROCSTARTCONV 1064 Writes here by DSP start an A-D conversion

ADMODEREG 1065 A-D operation mode control register+ power
supply enable

TIMERLOW 1066 A-D sample rate generator low word

TIMERHIGH 1067 A-D sample rate generator high byte

LED 1088 debug LED

HWREV 1089 Hardware Revision

DECODE 1090 PC/104 1/0 base address

INTERNAL HARDWARE

MUXTABLE

The MUXTABLE is central to the operation of the 4A24, it determines the input
channel scanning sequence, whether A-D data is averaged or used as-is, whether A-D
data is to be presented to the host in raw or calibrated format, or whether A-D data is to
be used for an internal auto-zero operation. The MUXTABLE is accessed with 2
pointers, the read pointer and the write pointer. The read pointer is automatically
advanced when a A-D conversion is started. This allows input multiplexor changes and
other sequential input operations to happen without host intervention The write pointer is
used by the host to initialize the entries in the MUXTABLE.

4A24 13

OPERATION

INTERNAL HARDWARE

MUXTABLE
The MUXTABLE is a 16 bit wide memory with 1024 entries. Each entry has the
following format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLR R/IC AZ IM1 IMO [AV2 | AVl [AVO | CH7 | CH6 | CH5 | CH4 | CH3 | CH2 [CH1 | CHO

Bits 7 through 0 (CH7 through CHO)are the channel select bits. They determine
the input channel selected by the 4A24's input multiplexor. Note that only CH3 through
CHO are used on the 4A24 card, CH7 through CH4 are available at the 4A24's input
connector for use in submultiplexing or other uses.

Bits 10 through 8 (AV2 through AVO0) determine whether and how many times the
A-D input should be averaged. When AV2 through AVO are 0, no averaging is done. The
number of A-D readings averaged is 2"AV:

AV2 AVl AVO0 Number of A-D readings averaged
0 0 0 1

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Note that when averaging is done, the MUXTABLE read pointer is not incremented
in response to a A-D conversion start until the desired number of conversions have been
averaged

4A24 14

OPERATION

INTERNAL HARDWARE

MUXTABLE
MUXTABLE bits 12 through 11 (IM1 and IMO) are the input mode bits. They select
the input data routing to the A-D:

IM1 IMO A-D input connection

0 0 Normal

0 1 Differential inputs reversed

1 0 A-D inputs connected to VREF

1 1 A-D inputs connected to GND (for Auto zero)

MUXTABLE bit 13 is the autozero bit. When it is 0, a normal reading takes place,
when it is a one, the A-D reading is not sent to the host, but is saved in the ADOFFSET
parameter for use by the DSP for offset calibration.

Bit 14 of the MUXTABLE entry is the RAW/CALIBRATE bit. It determines if the
data from the A-D should be returned to the host in the raw or calibrated form. If
RAW/CALIBRATE is 0, calibrated data is returned, if RAW/CALIBRATE is 1, raw data
direct from the A-D is returned to the host.

Bit 15 is the CLR bit. It is used to determine the length of the MUXTABLE
sequence. If the CLR bit is a 1, the MUXTABLE read pointer is cleared at the next
sample time.

If the CLR bit is set to 1 in the first table entry (location 0), the Muxtable read
pointer will never advance, and the MUXTABLE can be used as a simple latch. This is
useful for simple polled mode operation where the automatic features of the MUXTABLE
are not needed.

If less than the full 1024 MUXTABLE locations are used, the last table entry should

always have the CLR bit set to 1 so that the table sequence will restart at O after the last
entry.

4A24 15

OPERATION

INTERNAL HARDWARE

LOADING THE MUXTABLE

Before the MUXTABLE can be used it must be loaded with valid table data. This
is done with a sequence of parameter writes to the MUXTABLEWADD location to set the
table address where the data is written followed by a parameter write of the table data
to the MUXTABLEDATA location.

STARTING OUT RIGHT
In order to synchronize the first A-D conversion with the first MUXTABLE entry It
is necessary to set the MUXTABLEPTR to O before starting conversions.

CONVERT START REGISTER

The convert start register is a mask register that determines the source of the A-D
start conversion signals. It also controls the GO bit that is used to control bursts of
conversions.

The convert start register has the following format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GO XX XX XX XX SB HSB | EBP | ESB | PSB | FRE | HST | EPL | EST | PST | TST

Bit O through 4 are mask and polarity bits affecting the source and polarity of the
start conversion signal.

Bit O,TST is the TimerSTart bit. It enables the sample rate timer to start
conversions when set to 1.

Bit 1,PST is the ProcessorSTart bit. It enables the embedded DSP processor to
start conversions when set to 1.

Bit 2,EST is the ExternalSTart bit. It enables the external start conversion input
when set to 1.

Bit 3,EPL is the ExternalPoLarity bit. It determines the active polarity of the external
start conversion input. When 0, the external start convert input is active low, when 1, the
external start convert input is active high.

Bit 4,HST is the HostSTart convert bit. It enables the host to start conversions by
writing to the FIFO port.

4A24 16

OPERATION

INTERNAL HARDWARE
CONVERT START REGISTER

Bit 5, FRE is the sample rate generator free run bit. It gates the clock to the
sample rate generator. This needs to be set to 1 if the sample rate generator is free
running (non-burst mode)

Bits 6 through 9 are mask and polarity bits that determine if a start convert signal
also sets the GO bit, enabling a burst of conversions

Bit 6, PSB is the ProcessorStartBurst bit. If set, a DSP processor start convert
command will set GO, starting a burst of conversions.

Bit 7, ESB is the ExternalStartBurst bit. If set, an external start convert command
will set GO, starting a burst of conversions.

Bit 8, EBP is the ExternalBurstPolarity bit. It determines the active polarity of the
external start conversion input for starting bursts. When 0, the external start convert input
is active low, when 1, the external start convert input is active high.

Bit 9, HSB is the HostStartBurst bit. If set, a host start convert command will set
GO, starting a burst of conversions.

Bit 10, SB is the SingleBurst bit. If set, GO can not be set if the sample count
register is 0. This makes it easy to generate a single burst of conversions.

Bit 14, EXT is a read-only bit that reflects the status of the External Start
conversion input

Bit 15, GO is a read-only bit that reflects the status of the GO bit.

When using burst mode, the burst start signal normally should not start a
conversion. In normal (synchronous) operation, It sets GO which in turn enables the the
sample rate timer. Since we only want the sample rate timer to start conversions in the
burst mode, only the timer start conversion bit and the desired start burst bit should be
set in the convert start register.

When using burst mode, and the timing of the first conversion is important, the

sample rate timer should be written before starting a burst. This will guarantee that the
first conversion will start within ~70 nS of the burst start signal.

4A24 17

OPERATION

INTERNAL HARDWARE

SAMPLE COUNT REGISTER

The sample count register is a 32 bit register that determines the number of
conversions done in burst mode. The sample count register is loaded with the desired
convert count and is decremented at each conversion start. When the count changes
from 1 to O, the GO bit is cleared. If the conversion count is programmed to 0, GO will
not be cleared, and the burst will have indefinite length.

If only a single burst of conversions is desired, and the external start conversion
input is used to start this burst, the SingleBurst mode bit should be set. This will prevent
the GO bit from being set by external start conversion edges after the burst is complete.

Note that the sample count register is accessed in two halves
SAMPLECOUNTLOW and SAMPLECOUNTHIGH. When initializing the sample count
register the SAMPLECOUNTLOW register must be written first and the
SAMPLECOUNTHIGH register written last. The register is updated when
SAMPLECOUNTHIGH is written.

SAMPLE RATE TIMER

The sample rate timer is a 24 bit programmable divider that is used to set the A-D
conversion rate in free run and burst modes. The input frequency to the rate timer is 50
MHz giving an A-D conversion rate of

50e6/TIMER

As TIMER is a 24 bit parameter, it must be updated by writing to two parameters,
TIMERLOW and TIMERHIGH. TIMERLOW is the low 16 bits of the divisor and
TIMERHIGH is the high 8 bits. When initializing the TIMER register the TIMERLOW
register must be written first and the TIMERHIGH register written last.

The sample rate timer input clock is gated by the FRE bit in the convert start

register and the GO bit. Either FRE or GO must be set to enable the sample rate
generator.

4A24 18

OPERATION

INTERNAL HARDWARE

INTERRUPT SELECT REGISTER
The interrupt select register determines which interrupt is generated on FIFO full
conditions. It also controls the IRQ line tri-state and has in interrupt mask bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX XX XX XX XX XX XX XX XX MS XX TSE 1S3 1S2 IS1 1SO

Bits O through 3 (1S0..I1S3) select which interrupt is generated. ISO through 1S3 are
a binary representation of the interrupt number, for example:

IS3 1S2 IS1 ISO
IRQ5 0 1 0 1
IRQ10 1 0 1 0
Bit 4 is the IRQ tri-state enable. When bit 4 is 0, the IRQ line is floated (not
driven). This is the default startup state of the 4A24. If interrupts are used, this bit needs

to be set to 1.

Bit 6 is the interrupt mask bit. It is ANDed with the internal interrupt request signal.
When bit 6 is 0, no interrupts can be generated.

4A24 19

OPERATION

INTERNAL HARDWARE

DIGITAL /O PORTS

Two 12 bit digital 10 ports are available on the 4A24. Each port can have every
bit individually programmed to be input or output. Port operation is controlled by the
PORTADATA. PORTADDR. PORTBDATA. and PORTBDDR parameters. Bits in the DDR
registers (PORTADDR and PORTBDDR) determine the signal direction of the
corresponding ports. A one bit sets the corresponding I/O bit to the output mode and a
zero bit sets the corresponding bit to input mode. At power up or DSP reset, the DDR
registers are set 0x0000 so all /O bits are in input mode initially.

PORTA and PORTB DATA REGISTER
15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

XX XX XX XX P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 PO

PORTA and PORTB DDR REGISTER
15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

XX XX XX XX D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 DO

The digital 1/0 ports have a 24 mA current sink capability and built in 3.3K pullup
resistors on each I/O bit. The I/O bits are driven from 3.3V power and will only swing up
to ~ 3.3V.

4A24 20

OPERATION

SETUP EXAMPLES

SIMPLE POLLED MODE
In this mode conversions will be started by the host, and the host will poll the data
available bit of the host interface to know when the conversion data is available

First we will setup the MUXTABLE and CONVSTART register for simple polled
operation:

1. Write 0 to the CONVSTART register to mask all conversion start sources
This is to make sure no conversions are happening when we do our setup

2. Write 0 to MUXTABLEWADD

Set the MUXTABLE write pointer to 0

3. Write channel number+input mode + CLR bit (0x8000) to MUXTABLEDATA
We are writing the first entry in the MUXTABLE with our desired channel number
plus the CLR bit. Having the CLR bit set and using the first entry(0) in the
MUXTABLE makes the MUXTABLE behave like a simple latch.

4. Write 0 to FIFOCLR location

We clear the FIFO just in case it contains data from previous operations

5. Write 0 to MUXTABLEPTR

Set the MUXTABLE read pointer to 0. This is so that we are sure that the read
pointer that determines the MUXTABLE data entry presented to the input

multiplexors and post processing logic is from location 0

6. Write HST bit (0x010) to CONVSTART register to enable host started
conversions

This enables writes to the DATA FIFO (at the 4A24 BASE address) to start
conversions

At this point conversions can be started by writing to the DATA FIFO address. Data
will be available for reading when the DAV bit becomes set in the status register.

Note that multiple host started conversions can be done as long as the time

between conversion starts is greater than or equal to the ADC’s conversion time. The
result of these conversions will be stored in the data FIFO until read by the host.

4A24 21

OPERATION

SETUP EXAMPLES
TIMER START MODE

In this mode conversions are started at regular intervals by the timer. In this
example we will also setup the MUXTABLE to automatically scan 3 input channels: 4,
2 and 7 repeatedly at a 100 KHz rate. We will also setup the 4A24 to generate interrupt
12 when the FIFO contains 32768 or more samples.

1. Write 0 to the CONVSTART register to mask all conversion start sources

This is to make sure no conversions are happening when we do our setup

2. Write 0 to MUXTABLEWADD

Set the MUXTABLE write pointer to O

3. Write channel number (4) to MUXTABLEDATA

Setup entry 0 in the MUXTABLE to read channel 4

4. Write 1 to MUXTABLEWADD

Set the MUXTABLE write pointer to 1

5. Write channel number (2) to MUXTABLEDATA

Setup entry 1 in the MUXTABLE to read channel 2

6. Write 2 to MUXTABLEWADD

Set the MUXTABLE write pointer to 2

7. Write channel number (7) +CLR bit (Ox8000) to to MUXTABLEDATA

Setup entry 2 in the MUXTABLE to read channel 7 and clear then read pointer so
that the next conversion will use MUXTABLE entry 0.

8. Write 0 to FIFOCLR location

We clear the FIFO just in case it contains data from previous operations

4A24 22

OPERATION

SETUP EXAMPLES
TIMER START MODE

9. Write 0 to MUXTABLEPTR

Set the MUXTABLE read pointer to 0. This is so that we are sure that the read pointer
that determines the MUXTABLE data entry presented to the input multiplexors and post
processing logic starts from location O

10. Write 32768 to parameter IRQSETTHRESH

Setup FIFO logic to generate interrupt when FIFO has 32768 or more entries.

11. Write 32767 to parameter IRQCLRTHRESH

Setup FIFO logic to clear the IRQ when the FIFO count has 32767 or fewer entries

12. Write (12 + TSE (0X10) + MS (0x40)) to parameter IRQDRIVEREG

Select interrupt 12, enable the IRQ tristate driver, and unmask the interrupt

13. Write 500 (50 MHz/100 KHz) to parameter TIMERLOW

Setup low word of our rate generator for 100 KHz

14. Write 0 to parameter TIMERHIGH

Setup high byte of our rate generator. Note that the high byte must always be written
even when it is 0 or has not changed from previous writes, as write to the high byte
updates the 24 bit rate divisor latch.

15. Write (CST (0x01) + FRE (0x20)) bits to parameter CONVSTARTREG

Last thing is to enable the timer to free run by setting FRE and enable timer conversion
starts with CST)

At this point conversions will be running continuously at a 100 KHz rate,
sequencing through channel 4,2,and 7 repeatedly. The FIFO logic will cause an interrupt
(if enabled by the host) when it gets 32768 samples. When the interrupt occurs the host
can do a block read of all 32768 samples, since it is guaranteed that at least 32678
samples are available in the FIFO.

4A24 23

REFERENCE
SPECIFICATIONS

POWER SUPPLY
POWER CONSUMPTION:
ACTIVE

IDLE

ACCURACY

CONVERSION RATE 4A24-2

CONVERSION RATE 4A24-5

INPUT CURRENT

INPUT COMMON MODE RANGE
OPERATING TEMP.
OPERATING TEMP. (-I version)

OPERATION HUMIDITY

MIN

4.75V

-.05%

- 200 nA
-5.5V
0°C

-40°C

MAX

5.25V

350 mA
200 mA

+.05%

200 KHz

500 KHz

+200 nA
+5.5V
+70°C

+85°C

NOTES:

(5V only)

(Over full operating
temperature)

Less than 2 LSBs
settling time error for
1/2 scale step

Less than 10 LSBs
settling time error for
1/2 scale step

95% NON-CONDENSING

4A24 24

APPENDIX A - DSP OPCODES
MEMORY REFERENCE INSTRUCTIONS

(all instructions = 1 clock cycle = 20 nS)

A = accumulator M = memory C= carry bit

MNEMONIC

OR

XOR

AND

ADD

ADC

SUB

SUBC

LDA

STA

OPCODE

TXXX

8XXX

9XXX

AXXX

BXXX

CXXX

DXXX

EXXX

FXXX

OPERATION
A<=A | M
A<=A XOR M
A<=A &M
A<=A+M
A<=A+M+C
A<=A-M
A<=A-M-C
A<=M

M=>A

MEMORY REFERENCE INSTRUCTION ADDRESSING MODES:

MODE

ABSOLUTE:

INDEXED

INDEX+OFFSET

EXAMPLE

ADD M

ADD @X

ADD@Y,OFF

NOTES
M = 0..2047 absolute address
X = index register x

Y = index register y, OFF = 0..511 offset

4A24 25

APPENDIX A - DSP OPCODES
JUMP INSTRUCTIONS

MNEMONIC OPCODE OPERATION

JMP P 1PPP PC<=P

JMPNZ P 2PPP IF A<>0000 THEN PC <= P ELSE PC <= PC+1
JMPZ P 3PPP IF A=0000 THEN PC <= P ELSE PC <= PC+1
JMPNC P 4PPP F C=0 THEN PC <= P ELSE PC <= PC+1
JMPC P SPPP IF C=1 THEN PC <= P ELSE PC <= PC+1
JSR P 6PPP PC <= P, R<= PC+1

All jumps take 1 clock cycle = 20 nS but conditional jumps have 2 delay slots following
jump, this means the 2 instructions following the jump will always be executed whether
or not the jump is taken. Unconditional jumps (JMP and JSR) take 1 clock cycle.
JUMP INSTRUCTION ADDRESSING MODES

ABSOLUTE JMP P 0..2047 range

INDEXED JMP@R 0..4095 range

JSR is ABSOLUTE ONLY with 0..4095 range

OPERATE INSTRUCTIONS
LOAD IMMEDIATE GROUP all 1 clock = 20 nS

LDLI A[7..0] <= IMM BYTE Load low
Immediate

LDHI A[15..8] <= IMM BYTE Load High
Immediate

LXBI A <= sign extended IMM BYTE Load Sign
extended
b y t e
immediate

4A24 26

APPENDIX A - DSP OPCODES
MISC OPERATE GROUP

NOP

BSW

ROTCL

ROTCR

SXW

BNDU

BNDS

SATS

SATU

CTOF

STOF

ZTOF

No OPeration

NEWA[7..0] <= A[15..8], NEWA[15..8] <= A[7..0] BYTE SWAP
ROTate through Carry Left

ROTtate through Carry Right

Sign eXtend Word: If A[15] =1 NEWA <= OxXFFFF else NEWA <=
0x0000

BouND Unsigned: If A <> 0 then NEWA <= OxXFFFF, Carry <=1 else
Carry <=0

BouND Signed: if A[15] = 0 then NEWA <= Ox7FFF else NEWA <=
0x8000; If A <> 0x0000 and A <> OXFFFF then Carry <= 1 else
Carry <=0

SATurate Signed: If previous add operands were positive and we
have a negative result, NEWA <= Ox7FFF; If previous add operands
were negative and we have a positive result, NEWA <= 0x8000;
SATurate Unsigned: If previous add operation caused a carry, NEWA
<= OxFFFF; if previous subtract operation caused a carry, NEWA <=
0x0000

Copy Carry to Flag

Copy sign bit to Flag

Copy Zero status to Flag

4A24 27

APPENDIX A - DSP OPCODES
SKIP INSTRUCTION GROUP

SKPNZ SKiP if Not Zero
SKPZ SKiP if Zero
SKPNC SKiP if No Carry
SKPC SkiP if Carry
SKPP SkiP if Plus
SKPM SkiP if Minus
SKPF SkiP if Flag
SKPF SkiP if No Flag

INDEX REGISTER GROUP

LDA,X A<=X

LDA)Y A<=X

LDAR A<=R Get return address reg

STAX X<=A

STAY Y <=A

STAR R<=A Set return address reg (for computed jump)

4A24 28

APPENDIX B - DSP CODE

. MBFI RST
.include "gl obal . equ"

; sone useful constants
; new cpu sweet1l6m w th bound and skip instructions

: new hardware wi th conbi ned hostfifo
; update irq added to sinplify irq code

si gnat ur el equ OFEh
si gnat ur eh equ O0CAh
onekhzti mer equ 0C350h
codever si on equ 0B4h
car dnodeaut o equ O

car dnode5b equ 1

car dnode2d5b equ 2

car dnodebu equ 3

car dnode2d5u equ 4

:ram | ocati ons

zer ol oc equ O
onel oc equ 1
m nusonel oc equ 2
nsbb equ 3
nsbw equ 4
posnmax equ 5
t opni bbl el oc equ 6
| edstate equ 8
srdavfl agl oc equ 9
sr host busyf | agl oc equ 10
i nnodezer ol oc equ 11
i nmodenor nal | oc equ 12
i nnmoder ef | oc equ 13
cr par nmaskl| oc equ 14
crwitemaskl oc equ 15
t est AAAA equ 16
t est 5555 equ 17
nt est mask equ 18
ntdptrclrloc equ 20
nt function equ 21
adof f set 5b equ 22
adgai n5b equ 23
adof f set 2d5b equ 24

4A24 29

APPENDIX B - DSP CODE

adgai n2d5b
adof f set 5u
adgai n5u
adof f set 2d5u
adgai n2d5u
adof f set
adgai n
rawaddat a

cal data
boundedfi f ocnt
irgsetthresh
irgclrthresh
dat at ag
avenask

nmt draw cal | oc
m daut ozer ol oc
car dnode

det ectread

car dnode5udet
car dnode2d5bdet
si ngl eend

uni pol ar
maxdat a

m ndat a

tenp

; eepromroutine frame offsets

eedat a
eeadd
eecom
eenask
eet enp
eereturn

eeadof f set 5b
eeadgai n5b
eeadof f set 2d5b
eeadgai n2d5b

eeadof f set 5u
eeadgai n5u

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ

equ
equ
equ
equ
equ
equ

equ
equ
equ
equ

equ
equ

25
26
27
28
29
30
32
33
35
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52

60

gaa b wWNEFO

A OWNBEF

o Ol

data to/fromroutine
eeprom addr ess

read or wite conmand
tenp

tenp

tenp

4A24 30

APPENDIX B - DSP CODE

eeadof f set 2d5u
eeadgai n2d5u

eecar dnode

equ
equ

equ

7
8

9

: test and nai ntenance stuff

doeepronfl ag
eepront est dat ai n
eepr ont est dat aout
eepront est add
eepront est com
eepronfrane

dotestranfl ag

cinternal i/o port

comandr eg

; command reg bits
cr par mmaskhi gh

cr par nmaskl| ow
crwitemaskhi gh
crwitemaskl ow

cl ear busyfl ag
dat ar egl ow
dat ar eghi gh

st at usreg

; statusreg bits:
srdavf | ag

sr host busyf | ag
srhostfifof ul
srhostfifoemy

mul t a
mul tb
pr odl ow
pr odhi gh

equ
equ
equ
equ
equ
equ

equ

80
81
82
83
84
90

100

ocati ons

equ

equ
equ
equ
equ

equ
equ
equ

equ

equ
equ
equ
equ

equ
equ
equ
equ

0400h

07h
OFFh
080h
00h

0401h
0402h
0403h

0405h

01h
02h
04h
08h

0406h
0407h
0408h
0409h

card node

4A24 31

APPENDIX B - DSP CODE

addat a equ 040Ah

adcl rdav equ 040Ah

fifopush equ 0410h

fifopop equ 0411h

fifoclr equ 0412h

fifocntl ow equ 0412h

fifocnthigh equ 0413h

irqdrivereg equ 0414h

setirq equ 0415h

clrirq equ 0416h

updateirq equ 0417h

port adat a equ 0418h

port addr equ 0419h

port bdat a equ 041Ah

port bddr equ 041Bh

nmuxt abl ewadd equ 0420h

nmuxt abl edat a equ 0421h

; mux table data bits (in nsb)

nt daveO equ 01h

nt davel equ 02h

nt dave2 equ 04h

nt di nnodeO equ 08h

nt di nnodel equ 010h

nt daut ozer o equ 020h

nt dr aw_cal equ 040h

ntdptrclr equ 080h

nmuxt abl ept r equ 0422h

nmuxt abl edest equ 0423h

convstartreg equ 0424h

; convmaskreg bits:

cstinmerstart equ 01h ; ena for timer start conv

csprocstart 88Hv02h ; ena for internal proc start

csextstart equ 04h ; ena for external start conv

csext pol equ 08h ; polarity of external start
conv

cshoststart equ 010h ; ena for host start conversion

4A24 32

APPENDIX B - DSP CODE

cstinerfre

sanpl ecount | ow
sanpl ecount hi gh

clrgo

procstartconv

; A-D node register
noder eg

; nodereg bits:

nT power down

nT adr eset

nTi nmpul se

nT war p

nrob_ 2c

nT enapwr

nrrdc

timerl ow
timerhigh

shi f t box| ow
shi f t boxhi gh
shi f t boxcount

; eeprombit i/o --

eedi
eedo
eecl k
eecs

eer eadcom
eewritecom
eeni sccom
eecomrask
eeaddmask

| ed

equ

equ
equ

equ

equ

equ

equ
equ
equ
equ
equ
equ
equ

equ
equ

equ
equ
equ

al |

equ
equ
equ
equ

equ
equ
equ
equ
equ

equ

020h

0425h
0426h

0427h

0428h

0429h

01h
02h
04h
08h
010h
020h
040h

042Ah
042Bh

042Ch
042Dh
042Eh

in |sb

0430h
0430h
0431h
0432h

06h
05h
04h
04h
020h

0440h

enable timer clock free run

low 16 bits or 24 bit prog divider
high 8 bits (wites here do 24 bit
updat e)

out eepromdata in;
i n eeprom data out
out eeprom cl ock
out eeprom cs

4A24 33

APPENDIX B - DSP CODE

» Prog
begi n

ram

| xbi
sta
| xbi
sta
| xbi
sta
I dli
| dhi
sta
I dli
| dhi
sta

| dl
| dhi
sta

| dl
| dhi
sta

| dl

| dhi
sta
| dl

| dhi
sta
| xbi
sta
| xbi
sta
[dli
| dhi
sta
[dli
| dhi
sta
[dli
| dhi
sta
[dli

; const ant
0
zerol oc
1
onel oc
mLb
m nusonel oc
080h
00h
nsbb
00h
080h
nmsbw

00h
0CQ0h
car dnpdebudet

00h
060h
car dnode2d5bdet

0

OFOh

t opni bbl el oc
OFFh

07Fh

posmax
srdavf | ag
srdavf | agl oc

sr host busyf | ag
sr host busyf | agl oc
cr par nmaskl| ow
cr par mmaskhi gh
cr par nmaskl oc
crwitemaskl ow
crwitemaskhi gh
crwitemaskl oc
0AAh

0AAh

t est AAAA

055h

initialization

4A24 34

APPENDIX B - DSP CODE

[dhi 055h
sta test5555
| xbi O ; careful! this is used by several sta's
sta ledstate
sta led
; masks for mux table destination stuff (datatag)
[dhi 07h
sta avemask
[dhi ntdi nnode0 + ntdi nnpdel
sta innodezerol oc
[dhi ntdi nnodel
sta innoderefloc
| dhi ntdraw cal
sta ntdraw call oc
| dhi nt daut ozero
sta ntdautozerol oc
[dl'i 00h
[dhi ntdptrclr
sta ntdptrclrloc
| xbi 00h
sta portaddr ; make both of our gpio ports all inputs
sta portbddr
Idli nrenapw ; just turn on anal og power - 2s conp nobde
sta nodereg
I dli csprocstart+cshoststart ; enable proc,and host start
conver si ons
sta convstartreg
I dli 050h . programtimer for 1 KHz
| dhi 0C3h ; (divide by 50000)
sta timerlow
| xbi O
sta timerhigh
sta fifoclr ; clear the fifo
I dl'i codeversion ; put the firmvare rev in status reg
sta conmmandreg ;
I dli signaturel ; put signature in hi word of data reg
| dhi signatureh ;
sta dat areghi gh ;
| da nuxt abl ewadd ; get our single ended bit
and nsbw ;
bndu ;
sta singleend ; set single end flag

4A24 35

APPENDIX B - DSP CODE

| xbi
sta

sta
sta
sta
sta
sta
| da
j sr

0 ; do sonme hardware cleanup in case we got
here

clrirq : via a DSP reset instead of a system
reset

updateirq

cl earbusyflag ;

sanpl ecountl ow ;
sanpl ecount hi gh

doeepronfl ag ;. in case hung
i nnoder ef | oc ; for table fill
i ni t muxt ab0 ; init the first nux table entry for

pol | ed node

rkkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkh Kk

; read the calibration constants into nenory

| xbi
j sr
sta
| xbi
j sr
sta
| xbi
j sr
sta
| xbi
j sr
sta
| xbi
j sr
sta
| xbi
j sr
sta
| xbi
j sr
sta
| xbi
j sr
sta
| xbi
j sr
sta

eeadof f set 5b
readeepr om
adof f set 5b
eeadgai n5b
readeepr om
adgai n5b
eeadof f set 2d5b
readeepr om
adof f set 2d5b
eeadgai n2d5b
readeepr om
adgai n2d5b
eeadof f set 5u
readeepr om
adof f set 5u
eeadgai n5u
readeepr om
adgai n5u
eeadof f set 2d5u
readeepr om
adof f set 2d5u
eeadgai n2d5u
readeepr om
adgai n2d5u
eeadof f set 5b
readeepr om
adof f set 5b

4A24 36

APPENDIX B - DSP CODE

| xbi eeadgai n5b
j sr readeeprom
sta adgai nbb

rkkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhk Kk Kk
’

; card gain node setup (via data in eepron)
| da zerol oc
sta wunipolar ; assune unipolar
| xbi eecar dnode
j sr readeeprom
sta cardnode
sub cardnodeauto

j mpnz adset up . 1 f not zero then do manual setup

nop ; otherw se detect A-D range settings

| da innoderefloc ; We are going to neasure reference

vol t age

j sr procreadad ; to determ ne A-D input range
nodebut est

sta detectread ; save our A-D data

sub cardnodeb5udet

j mpc node2d5bt est ; its less than so check next

nop

| xbi car dnpdeb5u
sta cardnode

jmp adsetup
node2d5bt est
| da detectread ; get our A-D data
sub cardnode2d5bdet
j mpc node5bt est ; its less than so check next
nop

| xbi cardnode2d5b
sta cardnode
jmp adsetup
nodebbt est
| xbi cardnodebb
sta cardnode
nop
nop
adset up
| xbi cardnodebb
sub cardnode
j mpnz i nit2d5b
nop

4A24 37

| da adof fset5b
sta adoffset

| da adgai n5b
sta adgain

init2d5b

| xbi cardnode2d5b
sub cardnode

j mpnz i nitbu
nop

| da adof fset2d5b
sta adoffset

| da adgai n2d5b
sta adgain

i nitb5u

| xbi cardnodebu
sub cardnode

j mpnz i ni t2d5u
nop

| da adoffset5u
sta adoffset

| da adgai n5u

sta adgain

[dl'i nrenapw +nrob_2c
sta nodereg

| da m nusonel oc
sta uni pol ar

i nit2d5u

| xbi cardnode2d5u

sub cardnode

j mpnz car dnodedone
nop

| da adof fset2d5u

sta adoffset

| da adgai n2d5u

sta adgain

[dl'i nrenapw +nrob_2c
sta nodereg

| da m nusonel oc

sta uni pol ar

car dnodedone

APPENDIX B - DSP CODE

Power on + offset binary

Power on + offset binary

4A24 38

APPENDIX B - DSP CODE

rhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhhkkhkhkkhkhkkhkhkkhkhkhkhkkhkhkkhkhkkhkhhkkhkhkkhhkkhkkhkkhkhkkhkhkkhkhkkhkhkhk*k

; test our external RAM (FI FO nenory)

jsr testram

rkkhkkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkhhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkAhkhkkhkhkhkkhkhkkhkhkhkkhkhkkh Kk
’

mai nl oop

| da statusreg

and srdavfl agl oc
j mpnz get addat a
| da statusreg

and srhostbusyfl agl oc

j mpnz hostinterface
| da doeepronflag

nop

j mpnz doeepr om

nop

nop

jmp dofifo

rkkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkkh Kk

rkkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkk

; initialize location O in nmuxtable for polled use
; enter with nmuxtable data in acc

; sets up nuxtable to loop at 0O

; sets ptr to O

i ni t nuxt abO

sta ntfunction ; save the function
| xbi O ;
sta nuxtabl ewadd ; setup for wite to loc O
sta nuxtabl eptr ; clr the pointer
da ntfunction ; get the function
or ntdptrclrloc ; set clear_muxtabptr flag
; so the ptr will stick at O
sta rmuxtabl edat a ; wite loc O of table
jmp @R ; return

4A24 39

APPENDIX B - DSP CODE

rhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhhkkhkhkkhkhkkhkhkkhkhkhkhkkhkhkkhkhkkhkhhkkhkhkkhhkkhkkhkkhkhkkhkhkkhkhkkhkhkhk*k

. get and calibrate the a-d data

get addat a
sta
| da
sta
| da
add
sta
| da
SXW
addc
sta
| da
and
j mpz
| da
and
bsw
sta
| da
j mpz
| da
sta
jmp

bi pol ar1
| da
sta

wai t f or shi
| da

j mpnz

adcl rdav ;

muxt abl edest
dat at ag

shi ft box| ow
addat a

shi ft box| ow
addat a

shi f t boxhi gh
shi f t boxhi gh
dat at ag
nmsbw
mai nl oop
dat at ag
avemask

shi f t boxcount
uni pol ar

bi pol ar1
adgai n

mul ta

wai tforshift

adgai n

mul tb

ft

shi ft boxcount

wai tforshift

cal i br at edat a

first clear the dav flag

get tag

save it for l|ater

we al ways accumul ate
add the A-D data
save it

sign extend for high word

add hi gh part

save it back

get data tag

check if this is just to be accumnul at ed

if so, we're done!
drop all but ave
get ave into |Isbs
do asr

check if wunipol ar

get fractional part of gain;
store in _signed_ port;

(sta delay) get fractional part of gain
(sta delay) store in unsigned port;

; when shift count is zero (max 5)

4A24 40

APPENDIX B - DSP CODE

rkkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkAhkhkkhkhkhkkhkhkkhkhkhkkhkhkkh Kk

. Most of this stuff

is to bound the calibrated data so that there

; are no overflows and therefore seriously bad 16 bit data given to
. Scale calibration is done effectively by a 17 bit

;. the host
;o multiply

; acconpl i shed by addi ng

; fractional part (prodh
| da shiftboxl ow
nop
sta rawaddata
| da uni pol ar
j mpz bi pol ar 2
| da rawaddat a
sub adof f set
sat u
sta multb
| xbi O
sta shiftboxl ow
sta shiftboxhigh
lda multb
add prodhigh

sat u
jmp saveca

bi pol ar 2
| da rawaddat a
sub adof f set
sats
sta multa

mul t
| xbi O
sta shiftboxl ow
sta shiftboxhigh
lda multa
add prodhigh
sats

savecal
sta caldata
| da datatag
and mt dautozerol oc
j mpz raw_cal
| da rawaddat a
nop

our original A-D data to the scal ed
gh) fromour signed 16x16 bit nuliplier.

(in delay slot) get datal/averaged data
(in delay slot)

save raw (maybe averaged) A-D data

see if we are unipolar or bipolar

unsi gned saturate

wite zeroed a-d data to unsigned port
of mult

cl ear the average accumul at or

get zeroed a-d data again
scal e calibration
unsi gned saturate

get raw data

zero it

signed saturate

wite zeroed a-d data to signed port of

cl ear the average accumul at or

get zeroed a-d data again
scal e calibration
signed saturate

save |l ow 16 bits
now find out what to do with data

check if this is an autozero
if so get the raw a-d data

4A24 41

APPENDIX B - DSP CODE

sta
jmp
raw_cal
| da
and
j mpnz
| da
nop
| da
user aw
sta

jmp

adof f set
mai nl oop

dat at ag

and store it in the offset reg

we' re done!

check if raw or calibrated data is desired

mdraw calloc ;

user aw
rawaddat a ;

cal dat a

fifopush
mai nl oop

(in delay slot - |oad raw data)
(in delay slot)
; (if we fell through, use cal data)

send data to host
return

rkkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkh Kk

hostinterf
| da
and

J npnz
| da

and

st X
nop
nop
| da
st a
st a

jmp
hostwite
st x
| da
sta
sta

jmp

ace
comandr eg

; get conmand

crwitemaskloc ; check if read or wite

hostwite ;
comandr eg ; (in delay slot) its a read, get parm
addr ess
crparmmaskloc ; (in delay slot) drop all but parm
addr ess

unavoi dabl e delay fromldx to indirect access

@X ; get paraneter

dat ar egl ow ; send to host

cl earbusyflag ; clear busy flag to signal that data is
avai |

mai nl oop ; return

dat ar egl ow

; get the data to wite

cl earbusyflag ; nowthat we've got the data, signal host

@X

mai nl oop

; Wite the paraneter
; return

4A24 42

APPENDIX B - DSP CODE

rkkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkkhkhkkhkhkhkhkhkk
’

; manage fifo count and interrupts

dofifo
I da fifocnthigh ; get bit 17,16 of count
bndu ; 1f <> 0 bound at 65535
skpc . skip lda if bounded
lda fifocntlow ; if less than 65536 just use | ow word
sta boundedfifocnt ; save if for |later and host access
checkirq
sub irqgsetthresh ;. see if we need to set IRQ
skpc ; if carry, (count < thresh) dont set irq
sta setirq . if no carry (count => thresh), set irq

Ida irqgclrthresh
sub boundedfifocnt ; see if we need to clear irq

skpc ; if carry (count > thresh), dont clr
sta clrirq . if no carry, (count <= thresh) do clr
sta updateirq ; update the flag and irq signa

j mp mainl oop

rkkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhhkkhkhkhkkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkk
’

. sinple debug routine to display acc on 16 bits of 1/0

di spl aydat a
sta portadata ; display |lower 12 bits on port a
and topnibbl el oc ; drop lower 12 bits
bsw ; Ssr 12
rcr
rcr
rcr
rcr
sta portbdata ; display top 4 bits on port b |Isbs
jmp @R ; return

4A24 43

APPENDIX B - DSP CODE

rkkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkAhkhkkhkhkhkkhkhkkhkhkhkkhkhkkh Kk
’

; routine to do asynchronous raw A-D read
;. start with nuxtable data in acc, return with data in acc

procr eadad

st x ; save nuxtabl e data
[dr ;

sty ; save return address
| dx ; get nuxtab data

jsr initnmuxtab0 . init table with nmux tab data
| xbi 50 ; wait 4 usec for input to settle
pwai t | oop
sub onel oc
j mpnz pwai t | oop
nop
nop
| dy ; restore return address
str ;

sta procstartconv ; start a conver si on

wai t f or dat a
| da statusreg
and srdavfl agl oc
j mpz waitfordata

nop

nop

sta adclrdav ; first clear the dav flag
| da addata ; get the A-D data
jmp @R ; return

4A24 44

APPENDIX B - DSP CODE

s kkkkkkkkk
’

kkhkkkhkkhkhkkhhkkhkhkhkhhkhkkhhkhhkhkhhkhhkhkhhkhhhkhhkhhhkhhkhkhhkhhkhkkhhkhkhkhkkihikhkhrkik*x

; routine to read eeprom data
. start with eepromadd in acc, return with data in acc

readeepr om

sty
| dr
sta
| xbi
st X
| dy
sta
| xbi
sta
j sr
| da
str
| da

jmp

s kkkkkkkkk
’

wai t lu
| xbi
wai t | ooplu
sub
j mpnz
nop
nop
jmp

; save eeprom add

tenp ; save return address
eepronfrane

; Create eeprom frane

; get eeprom address to read
@X, eeadd
eer eadcom
@X, eecom
eeprom

tenp

@X, eedata ; |eave eepromdata in acc

@R

kkhkkkhkkhkhkkhhkkhkhkhkkhhkhkkhhkhhkhkhhkhhkhkhhkhhkhkhhkhhhkhhkhkhhkhhkhkkhhkhhkhkkihikikkhrkhik*x

12 ; wait about a usec (doesnt count jsr)

onel oc
wai t | ooplu

@R

4A24 45

APPENDIX B - DSP CODE

rkkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkAhkhkkhkhkhkkhkhkkhkhkhkkhkhkkh Kk
’

geneecl k
I xbi O - set clock | ow
sta eeclk
| xbi 24 © wait about 2 usec

geneel oopl
sub onel oc

j mpnz geneel oopl

nop

nop

| xbi 1 ; set clock high
sta eeclk

| xbi 24 ;wait about 2 usec

geneel oop2
sub onel oc

j mpnz geneel oop2
nop
nop
jmp @R ; return
eeprom
| dr
sta @X eereturn . Save return address
| xbi O
sta eecs . set all outs lowto start
sta eedi

sta eeclk
| xbi eeconmask;
sta @X eenask

[xbi 1
sta eecs
eecomnl oop

| da @X, eecom
and @X, eenmask
j npz eecone

| xbi 1
nop
sta eedi

jmp eeconboth

4A24 46

APPENDIX B - DSP CODE

eecone
| xbi O
sta eedi

eeconbot h

j sr geneecl k
| da @X eemask

rcr
sta @X, eenmask
j mpnz eecomnl oop
| xbi eeaddmask
nop
sta @X, eenmask
nop
eeaddl oop
| da @X, eeadd
and @X, eemask
j npz eeaddz
| xbi 1
nop
sta eedi
j mp eeaddboth
eeaddz
| xbi O
sta eedi
eeaddbot h

j sr geneecl k
| da @X eemask

rcr

sta @X eenask

j mpnz eeaddl oop

| xbi eewritecom

sub @X eecom ; check if wite

jnmpz eewrite ; if not, start the read
nop

| xbi O ; data part of the | oop

sta @X eetenp
| da nsbw : 08000h
sta @X eenask

4A24 47

APPENDIX B - DSP CODE

eer eaddat al oop
j sr geneecl k
| da eedo
and onel oc
j npz eer eaddat az
| da @X eetenp
or @X, eemask
sta @X eetenp
eer eaddat az
| da @X eemask
rcr
sta @X eemask
j mpnz eer eaddat al oop
nop
| da @X eetenp
sta @X eedata
jmp eecleanup ; done with read, go cl eanup

eewite
| da nsbw ; 08000h
sta @X, eenmask
nop

eew i t edat al oop
| da @X eedata
and @X eemask
j mpz eewritedataz

nop
| xbi 1
sta eedi

jmp eewitedataboth
eew i t edat az

| xbi O

sta eedi

4A24 48

APPENDIX B - DSP CODE

eew i t edat abot h
j sr geneecl k
| da @X, eemask

rcr
sta @X eenask
j mpnz eew i t edat al oop
nop
| xbi O
sta eecs ; clear and set eecs to poll busy bit
jsr waitlu
[xbi 1
sta eecs
jsr waitlu
eewitewaitfordone ; note that if wites are not enabl ed
| da eedo ; and you do an eepromwite
and onel oc ; you will hang here forever
jmpz eewritewaitfordone ;(until rev b with pullup on eedout)
nop
eecl eanup
| da @X, eereturn ; restore return address
str
[xbi O
sta eecs ; set all outs | ow when done
sta eedi
sta eeclk
jmp @R ; return

4A24 49

APPENDIX B - DSP CODE

rkkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkAhkhkkhkhkhkkhkhkkhkhkhkkhkhkkh Kk
’

doeepr om
| xbi eepronfrane
st x
| da eeprontestadd
sta @X eeadd
| da eepromt estcom
sta @X eecom
| da eepromtestdatain
sta @X eedata
jsr eeprom
| da @X eedata
sta eeprontestdataout
| xbi O
sta doeepronflag
j mp mainl oop

testram
| dr
sta tenp . Save return address
| xbi O
sta led

| da zeroloc
sta mtestmask
j sr dorantest
[xbi 1

sta led

| da mi nusonel oc
sta mtestmask
j sr dorantest
| xbi O

sta led

| da test AAAA
sta mtestnmask
j sr dorantest
[xbi 1

sta led

| da testbh555
sta mtestmask
j sr dorantest
| xbi O

4A24 50

APPENDIX B - DSP CODE

sta led

lda tenp

str

jmp @R
dor ant est

| xbi 0

st x

sta fifoclr ; clear the fifo
fillseq

xor mtestmask

sta fifopush

SXW

nop

nop

nop

nop

sta fifopush

| dx

add onel oc

st x

j mpnz fillseq

nop

nop

| xbi O

st x
t est seq

xor mtestmask

sub fifopop

sta fifopop

j mpnz memer r or

nop

| dx

xor mtest mask

SXW

sub fifopop

sta fifopop

j mpnz memner r or

nop

nop

| dx

add onel oc

st x

j mpnz test seq

4A24 51

APPENDIX B DSP - CODE

nop
nop
jmp @R . return

nMenerror
lda tenp
str
| xbi 1
sta led
nop
jmp @R . return

4A24 52

